Design Considerations for Natural Gas Storage in Gulf Coast Salt Caverns

PRESENTED BY
RON BENEFIELD
SPECTRA ENERGY TRANSMISSION
Content

• Why We Need More Gulf Coast Storage
• Salt Dome Geology
• Drilling and Casing Program
• Geo-Mechanical Stability (4 S’s)
 • Size, Shape, Span and Separation
• Minimum/Maximum Operating Pressure
• Additional Considerations
• Solution Mining Research Institute
• Conclusions
Why We Need GC Storage

• New Production from Offshore
 • 15% of Production in 2007
 • Expected to be 21% in 2030
 • More if more Offshore Drilling is allowed

• Potential for LNG Imports
 • Imported a record 771 BCF in 2007
 • Dropped to 352 BCF in 2008
 • Low Price
 • High transportation cost vs. Europe
 • Lack of storage in Gulf Coast
Why We Need GC Storage

Gas Production in Offshore Fields, Lower 48 States

Source: Energy Information Administration based on data from NMS, HPDI, CA Dept of Oil, Gas & Geothermal
Updated: April 8, 2009
Why We Need GC Storage

Annual U.S. Natural Gas Salt Underground Storage Activity - Injects

- Source: U.S. Energy Information Administration

Annual U.S. Natural Gas Salt Underground Storage Activity - Withdraw

- Source: U.S. Energy Information Administration

From EIA
Why We Need GC Storage

United States
LNG Imports vs. Total Imports

From EIA
• Mother salt is about 5 – 6 miles deep
• Temp. and pressure extrudes the salt upward
• Caprock is formed from insolubles in the salt
• Some domes have penetrated the surface
A Geologic Characterization is a must, methods include:

- Well Control
- Seismic, if
 - Well control is not available, or
 - Too few wells or information is sketchy
- Use old seismic data, and/or
 - Have old seismic data re-modeled
- Analysis of core samples
Drilling and Casing Program

- Desired Injection/Withdrawal Rate
- Maximum/Minimum Pressures – Storage
- Leaching, De-watering Rates (Re-watering?)
- Intermediate Gas Service?
- Minimum of 2 cemented strings in salt
- Maximum deviation requirement
- Design final casing for Lithostatic outside and atmospheric inside
Drilling and Casing Program

Intermediate Gas Service

Leach to Completion
Geo-Mechanical Stability

- Shape
- Size
- Separation
- Span
- Depth
Geo-Mechanical Stability
(4 S’s – Size, Shape, Span & Separation)

• Size
 • Size is dependent on the desired storage capacity and the depth to the casing shoe
 • All things equal, if capacity is 8 BCF, then:
 • Cavern volume for casing shoe of 2500’ is about 11 MMB
 • Cavern volume for casing shoe at 3500’ is about 8 MMB
 • What is the “right” depth?
Geo-Mechanical Stability
(4 S’s – Size, Shape, Span & Separation)

• Shape
 • Must resist salt “spalling”
 • Must resist “creep”
 • Must support cavern “span”
 • Must resist influence from adjacent caverns
 • Must allow for volume recovery (due to creep)
What is the Best Shape?

Overburden

Caprock

\[\approx 1.2 \text{ to } 1.5 \times X \]

Gas

Salt

Pressure Differential Increases with Depth
Geo-Mechanical Stability
(4 S’s – Size, Shape, Span & Separation)

• Span
 • Roof should be tapered or dome shaped
 • Radius of roof should not exceed distance from roof to casing shoe.
 • Roof radius should be modeled for stability
 • Rock Mechanics analysis
 • Avoid large unsupported (flat) roof spans!
Geo-Mechanical Stability
(4 S’s – Size, Shape, Span & Separation)

• Separation
 • Natural gas storage caverns should have a minimum Pillar/Diameter ratio of 2 to 3
 • Pillar is separation between caverns
 • Diameter is the effective cavern diameters of adjacent caverns
 • Use finite element study to determine
Geo-Mechanical Stability

Rock Mechanics Analysis

- Establishes safe maximum & minimum operating pressures
- Sets maximum roof spans at minimum pressure
- Sets safe separation distance for adjacent caverns
- Predicts “creep closure” rates
Min/Max Operating Pressure

- Minimum pressure gradient is NOT regulated
- Minimum allowable pressure gradient should be around 0.15 - 0.25 psi/foot
- Maximum pressure gradient IS regulated by the States
- Maximum is typically 0.80 to 0.90 psi/foot
- Good idea to check fracture pressure when drilling
Creep Closure
What is Creep Closure?

- Salt at the depth of storage is plastic, therefore can flow with differential pressure
- Weight of overburden causes a differential pressure with the cavern
- Overburden is assumed to be ≈ 1 psi/ft in the Gulf Coast
- At a cavern MAOP of ≈ 3,000 psi, the differential at TD for a 2000’ tall cavern is about 1,500 psi
- At cavern minimum pressure ≈ 600 psi, differential is almost 4,000 psi!
- Formation/Cavern differential pressure causes creep/closure
- Closure mostly occurs at cavern bottom where differential is greatest
Creep Closure
Can it be stopped?

• NO, When the cavern has completed leaching, the cavern will start getting smaller

• However, rate of creep closure can be affected by:
 • Storage pressures
 • Period of time at a particular pressure
 • Cavern shape
 • Cavern depth
Additional Considerations

- Leaching Program
 - Two Step; One Workover
 - Nitrogen Blanket (initially)
 - Control Salinity to Limit Backwashing
- NG Moisture Content
 - Set Dewatering String on Bottom
- Use Centralizers for De-Watering String
- Downhole Pressure/Temperature Probes
2 Step Solution Mining Program

- **Sump Building** Near Completion
 - BRINE RETURN
 - WATER INJECTION

- **Partially Developed Cavern**
 - RAW WATER INJECTION
 - BRINE RETURN
 - TOP OF INSOLUBLES

- **Cavern** Near Completion
 - BOTTOM OF CEMENTED CASING
 - BLANKET LEVEL
 - DEPTH OF ORIGINAL HOLE

Spectra Energy 23
• RESEARCH COMMITTEE
 • Ron Benefield – North America (Fall 2011)
 • Patrick De Laguérie – Outside N. A. (Fall 2011)
 • Jeff McCartney – North America (Spring 2010)
 • Paul Grönefeld – Outside N. A. (Spring 2010)
 • Jeff Langlinais – North America (Spring 2009)
 • Fritz Wilke – Outside N. A. (Spring 2009)
Spectra Energy 25

Solution Mining Research Institute

• ACTIVE PROJECTS
 • “Three Cavern Abandonment Field Tests”
 • “Upgrade the SALT_SUBSID Software”
 • “Standard Gas Cavern Practices”
 • “Deformation of Cemented Casings”
 • “High Frequency Cycling of Salt Storage Caverns”
 • “Flow-induced Vibration of Hanging Tubulars”

• NEXT USA MEETING SPRING 2010 – GRAND JUNCTION, CO
Conclusions

• Additional Gulf Coast cavern storage is needed in the future

• Certain design considerations should be made, Remember

DON’T THINK OUTSIDE THE BOX;
BUILD A BIGGER BOX!

• SMRI has ongoing research that will aide our industry
QUESTIONS?